Substituent-Dependence of Photophysical Properties of *trans*-2-Styrylpyridazin-3(2*H*)-ones

Bo Ram Kim, Su-Dong Cho, Hyung-Geun Lee, Heung-Seop Yim, Min-Jung Kim, Jaeyoung Hwang, Song-Eun Park, Jeum-Jong Kim, Kwang-Ju Jung, and Yong-Jin Yoon*

Department of Chemistry, Environmental Biotechnology National Core Research Center and Research Institute of Natural Science, Graduate School for Molecular Materials and Nanochemistry, Gyeongsang National University, Jinju 660-701, Korea *E-mail: yjyoon@gnu.ac.kr Received October 3, 2009 DOI 10.1002/jhet.137

Published online 10 July 2009 in Wiley InterScience (www.interscience.wiley.com).

The photophysical behavior of *trans*-2-styrylpyridazin-3(2*H*)-ones **3** strongly depend on the number and the position of substituents in the phenyl ring in THF, methylene chloride, acetonitrile and methanol. The absorption spectra of **3** containing the electron-donating substituents at the *para*-position show the red-shift, whereas the spectra of **3** containing the electron-withdrawing substituents show the blueshift. For the *trans*-2-(*p*-substituted-styryl)pyridazin-3(2*H*)-ones **3b**-**3h** and **3k**-**3o**, the magnitude of the solvatochromic shifts and the shape of the fluorescence spectra depend on the number and/or the position of substituents in benzene ring. The emission maximum of *trans*-2-styrylpyridazin-3(2*H*)-ones involving the electron-donating group is larger than one of *trans*-2-styrylpyridazin-3(2*H*)-ones involving the electron-withdrawing group in the phenyl ring. The magnitude of the emission maximum is roughly parallel to the relative electron-withdrawing ability of the substituents of the phenyl ring.

J. Heterocyclic Chem., 46, 691 (2009).

INTRODUCTION

The creation of luminescent molecules is an active field of research in supramolecular chemistry [1–8]. The chemosensors also have the advantages of possessing high sensitivity and selectivity, as well as providing online and real time analysis [9–25]. However, the development of a useful fluorescent probes is difficult because of the lack of flexible design strategies. The design also is largely empirical at present. Thus, the tuning of the photophysical properties introducing the substituent is very useful in this field.

Organic molecules that contain styryl moiety are an important fluorescent class and show a number of attractive photophysical and electro-optical properties

[20,26–36]. The substitution of phenyl ring in stilbene with a heterocyclic acceptor (pyridine) significantly affected the photophysical and photochemical behavior, because of the involvement of the $(n\pi^*)$ state [28,37]. According to the literature [26,28,38-40], the photophysical behavior and the torsional barrier of *trans*-stilbene derivatives depend on the nature of substituents and/or solvent polarity. Therefore, the fluorescent property could be tunable by the introduction of a suitable substituent on the phenyl ring in stilbene.

Recently, we reported the synthesis the photophysical properties and the potentiality for the application as spectroscopic or fluorescent probes for some N-styrylazinones containing Het-N-CH=CH-Ar (Het = hetetocycle) moiety [41]. The heterocycle-dependent photophysical behavior of trans-2-(2-arylvinyl)-4,5-dichloropyridazin-3(2H)-ones was also reported [42]. Because of the utility of C-Cl bond in 4,5-dichloropyridazin-3(2H)-one ring for the derivatization, we selected trans-4,5-dichloro-2-styrylpyridazin-3(2H)-one as parent fluorescence molecules, and studied on the dependence on the substituents of the phenyl ring about the photophysical properties of 3. Here we report on the synthesis and tuning of the photophysical properties of some trans-2styrylpyridazin-3(2H)-ones 3.

trans-4,5-Dichloro-2-styrylpyridazin-3(2H)-one

RESULTS AND DISCUSSION

Synthesis. Various *trans*-2-(substituted-styryl)pyridazin-3(2H)-ones 3 were prepared according to the literature [41] using the synthetic sequence outlined in Scheme 1. Compound 2 [43] was reacted with benzaldehyde after treating potassium iodide and then triphenylphosphine to give *trans*-isomers **3** as the major product. Although cis-isomers 4 were formed as the minor product, it was not isolated since the cis-isomer changed slowly to trans-isomer at room temperature during the workup. The structures of **3** were established by NMR, IR and elemental analyses.

Absorption spectra. All the trans-2-styrylpyridazin-3(2H)-ones 3a-3aa displays a single intense long wavelength absorption band in methylene chloride, tetrahydrofuran, acetonitrile and methanol. The absorption maxima are reported in Table 2. In general, the absorption maximum of 3 depends on substituent of para-position in benzene ring; that is, the electron-donating group shows the red-shift (e.g., 30 vs. 3a), whereas the electron-withdrawing group shows the blue-shift (e.g., 3f vs. 3a).

The substituted position also affects about absorption maximum of nitrophenyl derivatives, that is, the 4-nitro: the red-shift (3h vs. 3a); the 2-nitro or 3-nitro group: the blue-shift (3i/3j vs. 3a). The 3b show the blue-shift in the absorption maximum due to the 4-fluoro group.

On the other hand, we investigated the dependence of an absorption spectrum on the position and the number of methoxy group. All methoxy compounds showed the red-shift compared with 3a in the absorption spectrum. The magnitude of the bathochromic effect of 2-methoxy and 4-methoxy compounds (30 and 3p) is larger than that of 3-methoxy derivative (3q) (Table 2 entries 15– 17). For the dimethoxy derivatives, the bathochromic effect of 2,4-, 2,5-, 2,6-, and 3,4-dimethoxy compounds (3r, 3u, 3w, 3v) is also larger than one of 3,5-and 2,3dimethoxy derivatives (3s, 3t) (Table 2 entries 18–23). All four trimethoxy derivatives (3x-3aa) show much larger the bathochromic effect than mono- and dimethoxy derivatives. Among four trimethoxy derivatives, the magnitude of the bathochromic shift for 2,4,5- and 2,4,6-trimethoxy compounds (3y and 3z) is especially large (Table 2 entries 25 and 26).

Substituent-Dependence of Photophysical Properties of
trans-2-Styrylpyridazin-3(2H)-ones

Synthesis of <i>trans-5</i> from 2.									
Entry		3 , R	Yield (%) ^a	Entry		3, R	Yield (%) ^a		
1	а	C_6H_5 —	47	15	0	4-MeOC ₆ H ₄ —	46		
2	b	$4-FC_6H_4-$	45	16	р	$2-MeOC_6H_4-$	45		
3	с	$4-ClC_6H_4-$	44	17	q	$3-MeOC_6H_4-$	43		
4	d	$4-BrC_6H_4-$	51	18	r	2,4-(MeO) ₂ C ₆ H ₃	43		
5	e	$4-IC_6H_4$ —	42	19	s	3,5-(MeO) ₂ C ₆ H ₃ -	44		
6	f	$4-NCC_6H_4-$	41	20	t	2,3-(MeO) ₂ C ₆ H ₃ -	41		
7	g	$4-(MeO_2C)C_6H_4-$	49	21	u	2,5-(MeO) ₂ C ₆ H ₃ -	42		
8	h	$4-NO_2C_6H_4-$	58	22	v	$3,4-(MeO)_2C_6H_3-$	41		
9	i	$2-NO_2C_6H_4-$	49	23	W	2,6-(MeO) ₂ C ₆ H ₃ -	47		
10	j	$3-NO_2C_6H_4-$	54	24	х	3,4,5-(MeO) ₃ C ₆ H ₃ -	45		
11	ĸ	$4-MeC_6H_4$	65	25	у	2,4,6-(MeO) ₃ C ₆ H ₂ -	42		
12	1	$4 - (C_6H_5)C_6H_4 - $	43	26	Z	2,4,5-(MeO) ₃ C ₆ H ₂ -	38		
13	m	4-(C ₆ H ₅ CHCH)C ₆ H ₄ -	41	27	aa	2,3,4-(MeO) ₃ C ₆ H ₂ -	39		
14	n	$4-(Me)_2NC_6H_5-$	51						

Table 1Synthesis of *trans*-3 from 2.

^a Isolated yield.

In addition, the absorption spectra of 3 show hypsochromic and hyperchromic effects (exception for 3l, 3m, 3o, 3s, 3u, 3w, and 3y-3aa) in acetonitrile comparing with the spectra in methylene chloride. The absorption spectra of 3 show hypsochromic and hyperchromic effects (exception for 3b, 3d, 3g-3l, 3n, 3r, and 3z) in methanol comparing with the spectra in methylene chloride. The absorption spectra of 3 show bathochromic effect (exception for 3h, 3k, 3m, 3p, 3r, 3u, 3v, 3z, and 3aa) and hyperchromic effect (exception for 3c, 3e, 3o,

 Table 2

 The absorption maxima (nm) for trans-2-(substituted-styryl)pyridazin-3(2H)-ones 3 at room temperature.^a

		λ_{\max} (ε)				
Entry	3	CH ₂ Cl ₂	THF	CH ₃ CN	MeOH	
1	3a	371 (8657)	371 (8799)	365 (10410)	366 (8254)	
2	3b	370 (7935)	371 (8017)	361 (10117)	364 (8172)	
3	3c	371 (8090)	371 (7236)	363 (10104)	365 (7429)	
4	3d	370 (6919)	370 (8596)	365 (9874)	365 (8780)	
5	3e	370 (8837)	373 (8763)	367 (10110)	367 (8629)	
6	3f	362 (7941)	364 (8009)	359 (8587)	357 (7030)	
7	3g	369 (9209)	370 (9954)	363 (9349)	363 (8511)	
8	3h	373 (7004)	372 (9546)	370 (9369)	378 (7310)	
9	3i	362 (7358)	365 (8901)	358 (7952)	358 (7612)	
10	3ј	356 (7036)	361 (8750)	356 (8813)	353 (9042)	
11	3k	379 (9820)	379 (8010)	373 (8350)	374 (8570)	
12	31	384 (9594)	382 (4797)	374 (5285)	376 (6154)	
13	3m	396 (8898)	390 (9427)	387 (7948)	390 (7055)	
14	3n	373 (6264)	439 (8509)	432 (8589)	437 (8272)	
15	30	389 (8684)	389 (8314)	382 (7115)	382 (8610)	
16	3р	383 (8382)	382 (8755)	373 (8920)	366 (8254)	
17	3q	373 (8699)	374 (8232)	367 (9164)	366 (8649)	
18	3r	401 (8670)	401 (8794)	394 (8844)	397 (8748)	
19	3s	373 (8857)	374 (8653)	368 (8499)	369 (7211)	
20	3t	373 (7366)	376 (8024)	367 (9517)	368 (7556)	
21	3u	395 (8435)	394 (7464)	386 (8096)	387 (8172)	
22	3v	399 (8775)	397 (8842)	388 (8833)	390 (8970)	
23	3w	392 (9180)	393 (8327)	385 (7635)	387 (8717)	
24	3x	386 (7788)	387 (8118)	378 (8655)	378 (7310)	
25	3у	411 (9237)	414 (8056)	405 (8620)	410 (8728)	
26	3z	415 (8930)	413 (8357)	407 (6915)	408 (8213)	
27	3aa	393 (8844)	394 (9618)	384 (8396)	387 (8992)	

^a Data were collected from sample solution prepared under atmosphere without degassing or inert gas bubbling.

B. R. Kim, S.-D. Cho, H.-G. Lee, H.-S. Yim, M.-J. Kim, J. Hwang, S.-E. Park, J.-J Kim, K.-J. Jung, and Y.-J. Yoon

Table 3

Maxima of fluorescence (λ_f) , fluorescence band half-width $(\Delta v_{1/2})$, 0,0 transition $(\lambda_{0,0})$, Stokes shifts (Δv_{st}) , and quantum yields of 2-styryl-pyridazin-3(2*H*)-ones **3** in tetrahydrofuran, methylene chloride, methanol, and acetonitrile.^a

Compound	Solvent	$\lambda_{f}^{\ b}(nm)$	$\Delta v_{st} \ (cm^{-1})^c$	$\lambda_{0,0} \; \left(nm ight)^d$	$\Delta v_{1/2} \ (cm^{-1})$	Quantum yield $(\Phi)^{e}$
3a	THF	492(513)	6629	435	3451	0.18
	CH_2Cl_2	492	6608	434	3407	0.41
	MeOH	494	7096	431	3432	0.18
	CH ₃ CN	496 (519)	7335	431	3383	0.12
3b	THF	492 (501)	6645	435	3355	0.18
	CH_2Cl_2	491	6697	434	3396	0.27
	MeOH	496	7329	431	3431	0.20
2	CH ₃ CN	494	7233	431	3375	0.11
30		496 (517)	6//3	435	3384	0.33
	CH ₂ Cl ₂ M ₂ OH	491	0003	433	3401	0.18
	CH ₂ CN	495 (517)	7031	431	3404	0.09
3d	THF	493	6650	436	3404	0.05
eu	CH ₂ Cl ₂	487	6472	434	3416	0.08
	MeOH	495	7175	433	3496	0.02
	CH ₃ CN	495	7203	431	3378	0.01
3e	THF	491	6423	440	3335	0.24
	CH_2Cl_2	491	6640	438	3324	0.19
	MeOH	499	7225	436	3335	0.04
	CH ₃ CN	496 (513)	7053	434	3271	0.06
3f	THF	482	6726	427	3648	0.18
	CH_2Cl_2	475	6588	423	3751	0.41
	MeOH	476	7003	443	3717	0.18
2	CH ₃ CN	485	7092	421	3787	0.12
3g	THF	485	638/	431	3594	0.18
	CH ₂ Cl ₂	4/6	6310	431	3507	0.27
	CH CN	404	6051	420	3575	0.20
3h	THE	480	6010	428	3718	0.33
511	CHaCla	467	5409	425	3591	0.18
	MeOH	482	6554	424	3932	0.09
	CH ₃ CN	471	5821	423	3747	0.09
3i	THF	478	6455	421	3844	0.05
	CH_2Cl_2	472	6454	417	3889	0.08
	MeOH	471	6702	415	3837	0.02
	CH ₃ CN	480	7023	412	4098	0.01
3ј	THF	463	6141	416	4072	0.24
	CH_2Cl_2	471	6875	417	3774	0.19
	MeOH	485	7689	418	3816	0.04
21	CH ₃ CN	477	7111	416	3865	0.06
3K	THF	502	6480	444	3122	0.55
	M_2OH	502	6012	440	2149	0.42
	CH ₂ CN	505	7044	442	3710	0.31
31	THE	514	6757	453	2883	0.83
01	CH ₂ Cl ₂	514	6568	457	2862	0.46
	MeOH	519	7309	479	2854	0.83
	CH ₃ CN	521	7474	449	2820	0.84
3m	THF	529	6720	477	2425	0.32
	CH_2Cl_2	531	6420	476	2408	0.27
	MeOH	536	6984	508	3002	0.16
	CH ₃ CN	535	7320	470	2741	0.33
3n	THF	619	6624	545	2121	0.11
	CH_2Cl_2	618	10664	532	2168	0.13
	MeOH	621	6793	572	2665	. –
	CH ₃ CN	641	7753	535	16816	0.01
30	THF	526	6711	466	2431	0.75
	CH_2Cl_2	527	6747	466	2492	0.83
	MeOH	532	7415	467	2503	0.74
	CH ₃ CN	531	1313	462	2543	0.69

(Continued)

Substituent-Dependence of Photophysical Properties of *trans*-2-Styrylpyridazin-3(2H)-ones

Table 3 (Continued)

Compound	Solvent	$\lambda_{f}^{\ b}(nm)$	$\Delta \nu_{st} \; (cm^{-1})^c$	$\lambda_{0,0} \; (nm)^d$	$\Delta\nu_{1/2}~(cm^{-1})$	Quantum yield $(\Phi)^{e}$
3р	THF	519	6910	455	2842	0.73
-	CH_2Cl_2	519	6842	455	2457	0.78
	MeOH	523	7725	453	2797	0.81
	CH ₃ CN	523	7480	449	2742	0.64
3q	THF	500	6774	441	3220	0.46
-	CH_2Cl_2	498	6745	440	3222	0.67
	MeOH	508	7544	438	3308	0.31
	CH ₃ CN	504	7423	436	3187	0.25
3r	THF	535	6260	484	2348	0.62
	CH_2Cl_2	537	6316	483	2400	0.85
	MeOH	540	6653	485	2816	0.30
	CH ₃ CN	541	7070	479	2755	0.52
3s	THF	505	6972	444	3189	0.39
	CH ₂ Cl ₂	500	6847	442	3214	0.55
	MeOH	506	7374	438	3227	0.29
	CH ₂ CN	507	7541	437	4084	0.10
3t	THE	511	7043	444	3165	0.62
51	CH ₂ Cl ₂	513 (516)	7015	443	3148	0.77
	MeOH	507	7468	436	3386	0.04
	CH_CN	514	7689	433	3307	0.04
311	THE	536	6739	435	2716	0.02
54	CHaCla	538	6729	475	2864	0.12
	MeOH	173	4709	470	4249	0.02
	CH-CN	53/	7332	433	6092	0.02
3.	тие	537	6581	482	2521	0.76
31	CH Cl	536	6/38	482	2321	0.70
	MeOH	544	7202	479	2491	0.78
	CH-CN	541	7272	475	3047	0.24
3	THE	524	6361	475	2602	0.24
51	CH Cl	524	6441	405	2002	0.95
	M ₂ OH	524	6862	407	2615	0.50
	CH CN	520	6001	403	2013	0.00
2	THE	540	0991	401	2020	0.38
JX		546	7555	473	3020	0.33
	M ₂ OII	572	/009	475	2614	0.55
	CUCN	575	9038	400	2400	0.05
2	CH ₃ CN	574	6914 55(2	407	3409	0.13
ЗУ		537	5302	494	2390	0.69
	CH ₂ Cl ₂	539	5808	495	2488	0.40
	MeOH	222	6372	497	2881	0.33
2	CH ₃ CN	547	6863	490	2835	0.43
3Z	THE	282	7104	509	2760	0.24
	CH ₂ Cl ₂	585	/031	508	2857	0.16
	MeOH	538	5922	477	4155	
	CH ₃ CN	601	8150	478	3878	0.01
Jaa	THF	530	6513	472	2453	0.64
	CH_2Cl_2	532	6663	472	2426	0.91
	MeOH	535	7148	471	2614	0.18
	CH_3CN	535	7320	468	2623	0.55

^a Fluorescence data were obtained from corrected spectra.

^b The second vibronic band is given in parentheses.

 $^{c}\Delta\nu_{st}=\nu_{abs-}\;\nu_{f.}$

^d The value of $\lambda_{0,0}$ was obtained from the intersection of normalized absorption and fluorescence spectra.

^e Quantum yield of the emission is evaluated at 25°C, the quantum yield values is that relative to 9,10-diphenylanthracene $(1.00 \times 10^{-4} M)$ in acetonitrile (from 352 nm excitation wavelength, $\Phi = 0.95$).

3q, **3s**, **3u**, **3w**, and **3y-3aa**) in tetrahydrofuran comparing with the spectra in methylene chloride. However, the solvatochromic effect of these compounds is rather small, which indicate a small difference between the dipole moment of the Franck-Condon excited state and the ground state [44].

Emission spectra. The fluorescence maxima (λ_f) , the half-bandwidth $(\Delta v_{1/2})$, the 0,0 transitions $(\lambda_{0,0})$, the

Stokes shift (Δv_{st}) , and the fluorescence quantum yield (Φ) of all compounds **3** are reported in four solvents in Table 3. For the *trans*-2-(*p*-substituted-styryl)pyridazin-3(2*H*)-ones **3b**-**3h** and **3k**-**3o**, the magnitude of the solvatochromic shifts and the shape of the fluorescence spectra depend on the substituents in four solvents. In general, the emission maximum of **3** involving an electron-donating substituent is larger than one of **3** involving an electron-withdrawing. Among all *p*-substituted derivatives, compound **3n** shows the largest emission maximum and the lowest fluorescence efficiency in four solvents.

The magnitude of the emission maximum for p-substituted derivatives 3a-3h and 3k-3o is in the order 3n $(4-Me_2N) > 3m (4-C_6H_5CHCH) > 3o (4-MeO) > 3l (4 C_6H$) >3k (4-Me) >3a (4-H) >3b (4-F), 3c (4-Cl), 3e $(4-I) > 3d (4-Br) > 3g (4-CO_2Me) > 3f (4-CN) > 3h ($ NO₂) in methylene chloride, $3n (4-Me_2N) > 3m (4-Me_2N)$ $C_6H_5CHCH) > 30 (4-MeO) > 3l (4-C_6H_5) > 3k (4-Me)$ >3a (4-H), 3e (4-I) >3d (4-Br), 3c (4-Cl) >3b (4-F) $>3g (4-CO_2Me) >3f (4-CN) >3h (4-NO_2)$ in acetonitri le_{3n} (4-Me₂N) >3m (4-C₆H₅CHCH) >3o (4-MeO) >3l $(4-C_6H_5) > 3k (4-Me) > 3e (4-I) > 3b (4-F) > 3d (4-Br)$ >3a (4-H) >3c (4-Cl) >3g (4-CO₂Me) >3h (4-NO₂) >3f (4-CN) in methanol and 3n (4-Me₂N) >3m (4- C_6H_5CHCH >30 (4-MeO) >31 (4- C_6H_5) >3k (4-Me) >3c (4-Cl) >3d (4-Br) >3a (4-H), 3b (4-F) >3e (4-I) >3g (4-CO₂Me) >3f (4-CN) >3h (4-NO₂) in Tetrahydrofuran. The magnitude of the emission maximum for *p*-substituted derivatives is roughly parallel with the relative electron-withdrawing ability of the substitutents. According to the 0-0 transition energies (Table 3), the planar ${}^{1}t^{*}$ (ICT) state of **3a** (4-H) is stabilized by the electron-donating substituents (e.g., 3k, 3n, and 3o) but destabilized by the electron-withdrawing substituents (e.g., 3b, 3f, 3g, and 3h) [26,38]. The number and the position of the substituents on the phenyl ring and/or the solvents affected about the magnitude of fluorescence band half-width ($\Delta v_{1/2}$) of all derivatives. Fluorescence band half-width increases due to the electron-withdrawing groups, whereas one of derivatives containing the electron-donating groups decreases. All derivatives are strongly fluorescent in methylene chloride, but the values of $\Phi_{\rm f}$ decrease in more polar solvents. It depends on the substituents of the phenyl ring. The quantum yields of 3f-3j decrease due to the strong electron-withdrawing substituents, whereas one of 3b-3e and 3k-3aa increases due to halogen at the para-position (for 3b-3e) and the electron-donating substituents (for 3k-3aa).

According to the literatures [26,45], the energies of the fluorescence maxima of benzene derivatives correlate better with the Hammett σ^+ than with the σ constants. The relationship of the energies of the fluorescence maxima for **3** and the Hammett σ^+ shows in the Figure 2. In four solvents, a nice linear relationship can be observed for *p*-substituted derivatives **3e–3h**, **3k**, and **3o** except for **3l**.

For the **3h** (4-NO₂), **3i** (2-NO₂), and **3j** (3-NO₂), the magnitude of the solvatochromic shifts and the shape of the fluorescence spectra (Fig. 1) depend on the substituted position. The magnitude of the emission maximum for 3h-3j is in the order 3i (2-NO₂) >3j (3-NO₂) >3h(4-NO₂) in methylene chloride and acetonitrile, 3j (3- NO_2 >3h (4-NO₂) >3i (2-NO₂) in methanol and 3h (4- NO_2) >3i (2-NO₂) >3j (3-NO₂) in THF. The magnitude of the quantum yields for **3h**, **3i**, and **3j** is in the order **3h** (4-NO₂) >**3j** (3-NO₂) >**3i** (2-NO₂). According 0-0 transition energies (Table 3), the stability of the planar ¹t* (ICT) state in the excited state for *trans*-2-(nitrostyryl)pyridazin-3(2H)-ones 3h-3j depends on the substituted position of the nitro group and/or slightly the solvent. Among the trans-2-(p-substituted-styryl)pyridazin-3(2H)-ones, p-methoxy derivative 30 shows the largest value of the emission maximum and the 0-0 transition energy in four solvents. Therefore, we have been investigated the dependence of the fluorescence spectra for mono-, di- and trimethoxystyryl derivatives on the position and the numbers of the methoxy group. Among the three monomethoxy derivatives, p-substituted derivative **30** shows excellent emission maximum and the high fluorescence intensity in four solvents except for 3p in methanol.

For the *trans*-2-(dimethoxystyryl)pyridazin-3(2*H*)ones 3r-3w, the emission maximum and the quantum yield depend very highly on the solvent and the substituted position (Table 3). Among six dimethoxy derivatives, compound 3v [3,4-(MeO)₂] shows the highest quantum yield in tetrahydrofuran. For the *trans*-2-(trimethoxystyryl)pyridazin-3(2*H*)-ones 3x-3aa, the number and the position of the methoxy group and/or the solvent affected about the magnitude of the solvatochromic shifts, the shape of the fluorescence spectra and the quantum yield.

In case of the *trans*-2-(methoxystyryl)pyridazin-3(2*H*)-ones **30-3aa**, the magnitude of the solvatochromic shifts and the shape of the fluorescence spectra depend on the number and the substituted position of the methoxy group. These effects for the di- and trimethoxy derivatives 3r-3w, 3x-3aa are larger than the monomethoxy derivatives 3p and 3q in polar solvents such as acetonitrile and methanol. Among the methoxy derivatives, the magnitude of the solvatochromic shifts and the shape of the fluorescence spectra for 2,5-dimethoxy derivative (3u) change dramatically in polar solvent such as methanol and acetonitrile. The magnitude of the fluorescence maxima for the trimethoxy derivatives 3x-3z is larger than the magnitude of the mono- or dimethoxyphenyl derivatives 3p-3w except for 3r. In the case of

Figure 1. Normalized fluorescence spectra of *p*-substituted-2-styrylpyridazin-3(2*H*)-ones **3a-3h** and **3k-3o** in methylene chloride (I), acetonitrile (II), methanol (III), and tetrahydrofuran (IV).

dimethoxy derivatives 3r-3w, the emission maximum strongly depends on the substitution position and the solvent. According to the 0-0 transition energies (Table 3), the stability of the planar ¹t* (ICT) state for all methoxy compounds **30–3aa** depends also on the substituted position and the number of the methoxy group and slightly the solvent. Especially, the methoxy group at the *para*-position should be more stabilized, whereas the methoxy group at the *meta*-position should be more destabilized.

CONCLUSIONS

The substituent-dependent photophysical behavior of the 28 *trans*-2-styryl-4,5-dichloropyridazin-3(2H)-ones **3** as novel fluorescent molecules has been elucidated. According to our observation, the absorption maximum of compounds **3** depends on the substituent, the substituted position of the benzene ring and the solvent polarity. In addition, the intensity of absorption spectra for compounds **3** depends on the solvent polarity.

The magnitude of the solvatochromic shifts and the shape of the fluorescence spectra for 3 depend on the substituents. In general, the emission maxima of trans-2-styrylpyridazin-3(2H)-ones involving the electrondonating group is larger than that of trans-2-styrylpyridazin-3(2H)-ones involving the electron-withdrawing group. The magnitude of the emission maximum is roughly parallel with the relative electron-withdrawing ability of the substitutents. According to the 0-0 transition energies (Table 3), the planar ¹t* (ICT) state of the trans-2-(p-substituted-styryl)pyridazin-3(2H)-ones is stabilized by electron donating substituents but destabilized by electron withdrawing substituents. The number and the position of the substituents on the phenyl ring and/or the solvents also affected about the magnitude of fluorescence band half-width $(\Delta v_{1/2})$ of all derivatives. The quantum yield and fluorescent intensity of all compounds 3 depend on the number, the kind and the position of substituent in the phenyl ring and the solvent.

By introducing the suitable substituent in the phenyl ring of styryl moiety, *trans*-2-styrylpyridazin-3(2H)-ones **3** may use as a platform for fluorescence probes. These results may be a guide-line for the tuning of novel fluorescence molecules containing styryl moiety.

Figure 2. Correlation diagram of the energies of the fluorescence maxima against the Hammett σ^+ constants for *p*-substituted derivatives 3e-3h, 3k, 3l, and 3o in methylene chloride, tetrahydrofuran, methanol and acetonitrile.

Further dynamic, theoretical and application studies on these and the related systems would complement the current results and provide more insights into the photophysical behaviors of *trans-N*-styryl-nitrogenheterocycles.

EXPERIMENTAL

General comments. Melting points were determined with a capillary apparatus and uncorrected. ¹H and ¹³ NMR spectra were recorded on a 300 MHz spectrometer with chemical shift values reported in δ units (ppm) relative to an internal standard TMS. IR spectra were obtained on an IR spectrophotometer. Elemental analyses were performed with a Perkin Elmer 240 C. Open-bed chromatography was carried out on silica gel (70–230 mesh, Merck) using gravity flow. The column was packed as slurries with the elution solvent.

Typical process of 4,5-dichloro-2-chloromethylpyridazin-3(2H)-one (2). A mixture of 4,5-dichloropyridazin-3(2H)-one (1, 60 g, 364 mmol) and distilled water (350 mL) was stirred for 10 min at room temperature. After adding formaldehyde solution (36%, 70 mL), the solution was refluxed for 1.5 h. After cooling to 5-10°C, the resulting precipitate was filtered, washed with cold water (0-5°C, 200 mL) and dried in air to give N-hydroxymethyl-4,5-dichloropyridazin-3(2H)-one. A solution of thionyl chloride (357 mmol) and dimethylformamide (360 mmol) in methylene chloride (50 mL) was added slowly to the mixture of N-hydroxymethyl-4,5-dichloropyridazin-3(2H)-one and methylene chloride (550 mL) for 30 min at room temperature with stirring. The resulting mixture was stirred for 2 h at room temperature. After cooling to 0°C, water (200 mL) was added slowly. The solution was neutralized to pH 6.7-7.4 by using saturated solution of NaHCO₃. The organic layer was separated and then dried over anhydrous magnesium sulfate. The resulting organic solution was evaporated under reduced pressure. The residue was washed with nhexane (100 mL) to give 4,5-dichloro-2-chloromethylpyridazin-3(2H)-one (2, 71.2 g, 92%) as white color. White crystal (diethyl ether/n-hexane = 1:5, v/v). mp 69–70°C (lit. 43 mp 70–71°C). TLC (CH₂Cl₂) $R_{\rm f} = 0.65$. IR (KBr) 3046, 2984, 1670, 1292, 1122, 964 cm⁻¹; ¹H NMR (CDCl₃): δ 5.83 (s, 2H), 7.88 ppm (s, 1H); ¹³C NMR (CDCl₃) δ 58.40, 134.87, 137.23, 137.34, 155.58 ppm. Elemental analysis calcd. for C5H3Cl3N2O: C 28.13, H 1.42, N 13.12; found: C 28.10, H 1.41, N 13.09.

Typical process of synthesis for trans-4,5-dichloro-2-styrylpyridazin-3(2H)-one 3. A mixture of 2-chloromethyl-4,5dichloropyridazin-3(2H)-one (2, 3 g, 14.055 mmol), sodium iodide (2.45 g, 14.76 mmol) and acetonitrile (50 mL) was refluxed for 10 h. After cooling to $30-40^{\circ}$ C, triphenylphosphine (4.07 g, 15.51 mmol) was added to the reaction solution. The mixture was then refluxed for 6 h. After cooling to room temperature, the mixture was filtered by using Celite 545 and washed with methylene chloride (50 mL). The organic layer was concentrated under reduced pressure. After adding dichloromethane (100 mL) to the resulting mixture, the solution was stirred for 20 min. The solution was filtered and then concentrated under reduced pressure. After cooling to room temperature, the resulting precipitate was filtered, washed with excess diethyl ether and dried to give the product as thin yellow crystals. The product was used without further purification.

Vol 46

To a solution of crude ((4,5-dichloro-6-oxopyridazin-1(6H)yl)methyl)triphenyl phosphonium iodide (8 g, 14.10 mmol) in acetonitrile (50 mL) was added benzaldehyde (1.5 g, 14.10 mmol) at 0-10°C. After stirring for 30 min, potassium t-butoxide (2.05 g, 95%, 17.21 mmol) was added. The resulting mixture was stirred for 2 h. The solution was concentrated under reduced pressure. After adding dichloromethane (100 mL) and then water (50 mL), the solution was stirred for 10 min, and neutralized to pH 6.7-7.4 by using saturated solution of NaHCO₃. The organic layer was separated and then dried over anhydrous magnesium sulfate. The resulting organic solution was evaporated under reduced pressure. The resulting residue was applied to the top of an open-bed silica gel. The column was eluted with methylene chloride/n-hexane (1:4, v/v). Fractions containing *trans*-isomer 3 were combined and evaporated to give pure trans-isomer 3, respectively. The yields of all compounds 3 showed in Table 1.

(*E*)-4,5-Dichloro-2-styrylpyridazin-3(2*H*)-one (3a). Pale yellow crystal (diethyl ether:*n*-hexane = 1:2, v/v). mp 161–162°C. IR (KBr) 3108, 1664, 1592, 1300, 1238, 1134, 958, 898, 742, 696 cm⁻¹. ¹H NMR (CDCl₃); δ 7.25 ~ 7.38 (m, 4H), 7.47 ~ 7.50 (m, 2H), 7.86 (s, 1H), 8.10 (d, *J* = 14.35 Hz, 1H). ¹³C NMR (CDCl₃); δ 122.21, 124.13, 127.02, 128.49, 128.88, 134.49, 134.56, 135.94, 136.04, 154.68. Anal. Calcd. for C₁₂H₈Cl₂N₂O: C, 53.96; H, 3.02; N, 10.49. Found: C, 53.94; H, 3.01; N, 10.51.

(*E*)-4,5-Dichloro-2-(4-fluorostyryl)pyridazin-3(2H)-one (3b). Pale yellow crystal (methylene chloride). mp 158–159°C. IR (KBr) 3096, 1664, 1596, 1520, 1240, 1138, 960, 858, 748 cm⁻¹. ¹H NMR (CDCl₃); δ 7.01 ~ 7.09 (m, 2H), 7.24 (d, *J* = 14.58 Hz, 1H), 7.43 ~ 7.48 (m, 2H), 7.87 (s, 1H), 8.04 (d, *J* = 14.34 Hz, 1H). ¹³C NMR (CDCl₃); δ 115.78 (C–F), 116.07 (C–F), 121.02, 123.79 (C–F), 123.82 (C–F), 128.58 (C–F), 128.69 (C–F), 130.65 (C–F), 130.69 (C–F), 134.49, 136.00 (C–F), 136.11 (C–F), 154.66, 161.12, 164.42. Anal. Calcd. for C₁₂H₇Cl₂FN₂O: C, 50.55; H, 2.47; N, 9.83. Found: C, 50.56; H, 2.49; N, 9.84.

(*E*)-4,5-Dichloro-2-(4-chlorostyryl)pyridazin-3(2H)-one (3c). Light yellow crystal (methylene chloride). mp 177–178°C. IR (KBr) 3086, 1664, 1582, 1494, 1290, 960, 818 cm⁻¹. ¹H NMR (CDCl₃); δ 7.21 (d, J = 14.36 Hz, 1H), 7.27 ~ 7.34 (m, 2H), 7.38 ~ 7.43 (m, 2H), 7.87 (s, 1H), 8.08 (d, J = 14.35 Hz, 1H). ¹³C NMR (CDCl₃); δ 120.80, 124.37, 128.14, 129.06, 133.03, 134.16, 134.52, 136.06, 136.20, 154.63. Anal. Calcd. for C₁₂H₇Cl₃N₂O: C, 47.79; H, 2.34; N, 9.29. Found: C, 47.78; H, 2.33; N, 9.25.

(*E*)-2-(4-Bromostyryl)-4,5-dichloropyridazin-3(2H)-one (3d). Light yellow crystal (methylene chloride). mp 183–184°C. IR (KBr) 3100, 1676, 1594, 1496, 1300, 1138, 963, 902, 820 cm⁻¹. ¹H NMR (CDCl₃); δ 7.20 (d, J = 14.35 Hz, 1H), 7.32 ~ 7.36 (m, 2H), 7.46 ~ 7.50 (m, 2H), 7.87 (s, 1H), 8.09 (d, J = 14.32 Hz, 1H). ¹³C NMR (CDCl₃); δ 120.91, 122.37, 124.55, 128.43, 132.04, 133.55, 134.58, 136.05, 136.19, 154.63. Anal. Calcd. for C₁₂H₇BrCl₂N₂O: C, 41.65; H, 2.04; N, 8.10. Found: C, 41.66; H, 2.03; N, 8.08.

(*E*)-4,5-Dichloro-2-(4-iodostyryl)pyridazin-3(2H)-one (3e). Light yellow crystal (methylene chloride). mp 194–195°C. IR (KBr) 3122, 1680, 1596, 1298, 1234, 970, 900, 806, 760 cm⁻¹. ¹H NMR (CDCl₃); δ 7.17 ~ 7.24 (m, 3H), 7.69 (d, J = 8.42 Hz, 2H), 7.88 (s, 1H), 8.12 (d, J = 14.37 Hz, 1H). ¹³C NMR (CDCl₃); δ 99.94, 121.01, 124.54, 128.61, 134.09, 134.59, 136.09, 136.25, 137.99, 154.66. Anal. Calcd. for C₁₂H₇ICl₂N₂O: C, 36.67; H, 1.80; N, 7.13. Found: C, 36.65; H, 1.79; N, 7.10.

(*E*)-2-(4-Cyanostyryl)-4,5-dichloropyridazin-3(2H)-one (3f). Light yellow crystal (methylene chloride). mp 226–227°C. IR (KBr) 3092, 2998, 2226, 1665, 1584, 1294, 1136, 962, 947, 895, 864, 824, 556 cm⁻¹. ¹H NMR (CDCl₃); δ 3.81 (s, 20CH₃), 6.40 ~ 6.42 (t, *J* = 2.19 Hz, 1H), 6.62 (d, *J* = 2.21 Hz, 2H), 7.27 (d, *J* = 14.37 Hz, 1H), 7.56–7.59 (m, 2H), 7.64 ~ 7.67 (m, 2H), 7.91 (s, 1H), 8.19 (d, *J* = 14.38 Hz, 1H). ¹³C NMR (CDCl₃); δ 111.57, 118.67, 119.97, 126.65, 127.38, 132.66, 134.83, 136.40, 136.62, 139.28, 154.73 ppm. Anal. Calcd. for C₁₃H₇Cl₂N₃O: C, 53.45; H, 2.42; N, 14.38. Found: C, 53.44; H, 2.42; N, 14.35.

(*E*)-4,5-Dichloro-2-(4-methoxycarbonylstyryl)pyridazin-3(2H)one (3g). Light yellow crystal (methylene chloride). mp 212– 214°C. IR(KBr) 3086, 3053, 3005, 2954, 1711, 1670, 1589, 1436, 1277, 1182, 112, 954 cm⁻¹. ¹H NMR (CDCl₃); δ 3.91 (s, OCH₃), 7.30 (d, J = 14.37 Hz, 1H), 7.54 ~ 7.57 (m, 2H), 7.90 (s, 1H), 8.02 ~ 8.05 (m, 2H), 8.20 (d, J = 14.35 Hz, 1H). ¹³C NMR (CDCl₃); δ 52.17, 120.91, 125.82, 126.85, 129.77, 130.17, 134.70, 136.21, 136.38, 139.12, 154.72, 166.62 ppm. Anal. Calcd. for C₁₄H₁₀Cl₂N₂O₃: C, 51.72; H, 3.10; N, 8.62. Found: C, 51.71; H, 3.11; N, 8.60.

 δ 7.32 (d, J= 14.38 Hz, 1H), 7.61 \sim 7.65 (m, 2H), 7.92 (s, 1H), 8.20 \sim 8.27 (m, 3H). $^{13}\mathrm{C}$ NMR (CDCl₃); δ 119.47, 124.25, 127.19, 127.44, 134.86, 136.44, 136.69, 141.26, 147.32, 154.72. Anal. Calcd. for $C_{12}\mathrm{H_7Cl_2N_3O_3}$: C, 46.18; H, 2.26; N, 13.46. Found: C, 46.16; H, 2.23; N, 13.47.

(*E*)-4,5-dichloro-2-(2-nitrostyryl)pyridazin-3(2*H*)-one (3i). Light yellow crystal (methylene chloride). mp 180–181°C. IR (KBr) 3108, 3068, 1668, 1596, 1520, 1340, 1300, 1280, 1146, 1122, 964, 950, 898, 738 cm⁻¹. ¹H NMR (CDCl₃); δ 7.45 ~ 7.50 (m, 1H), 7.61 ~ 7.66 (m, 1H), 7.70 ~ 7.73 (m, 1H), 7.80 (d, *J* = 14.15 Hz, 1H), 7.93 (s, 1H), 8.00 ~ 8.04 (m, 1H), 8.08 (d, *J* = 14.12 Hz, 1H). ¹³C NMR (CDCl₃); δ 117.55, 125.07, 127.30, 128.59, 128.92, 130.38, 133.46, 134.72, 136.50, 136.64, 148.24, 154.79. Anal. Calcd. for C₁₂H₇Cl₂N₃O₃: C, 46.18; H, 2.26; N, 13.46. Found: C, 46.15; H, 2.24; N, 13.45.

δ 7.38 (d, J = 14.26 Hz, 1H), 7.59 ~ 7.64 (m, 1H), 7.88 ~ 7.91 (m, 1H), 8.08 ~ 8.15 (m, 2H), 8.23 (d, J = 14.38 Hz, 1H), 8.34 (s, 1H). ¹³C NMR (CDCl₃); δ 119.34, 121.89, 123.06, 127.12, 130.78, 133.35, 134.01, 136.36, 136.92, 137.69, 148.83, 154.75. Anal. Calcd. for C₁₂H₇Cl₂N₃O₃: C, 46.18; H, 2.26; N, 13.46. Found: C, 46.13; H, 2.23; N, 13.42.

(*E*)-4,5-dichloro-2-(4-methylstyryl)pyridazin-3(2*H*)-one (3*k*). Light yellow crystal (methylene chloride). mp 179–180°C. IR (KBr) 3150, 2976, 1688, 1610, 1322, 1158, 980, 920, 832, 758 cm⁻¹. ¹H NMR (CDCl₃); δ 2.35 (s, CH₃), 7.15 (d, J = 7.97Hz, 2H), 7.25 (d, J = 14.34 Hz, 1H), 7.38 (d, J = 8.08 Hz, 2H), 7.85 (s, 1H), 8.08 (d, J = 14.32 Hz, 1H). ¹³C NMR (CDCl₃); δ 21.28, 122.22, 123.37, 126.94, 129.57, 131.69, 134.37, 135.80, 135.91, 138.59. Anal. Calcd. for C₁₃H₁₀Cl₂N₂O: C, 55.54; H, 3.59; N, 9.96. Found: C, 55.51; H, 3.58; N, 9.93.

(E)-2-(2-(biphenyl-4-yl)vinyl)-4,5-dichloropyridazin-3(2H)one (3l). Light yellow crystal (methylene chloride). mp 212213°C. IR (KBr) 3088, 1680, 1614, 1140, 972, 838, 760 cm⁻¹. ¹H NMR (CDCl₃); δ 7.31 ~ 7.38 (m, 2H), 7.42 ~ 7.47 (m, 2H), 7.55 ~ 7.63 (m, 6H), 7.92 (s, 1H), 8.16 (d, J = 14.31 Hz, 1H). ¹³C NMR (CDCl₃); δ 121.99, 123.92, 126.84, 126.96, 127.43, 127.49, 128.77, 133.47, 134.34, 136.09, 136.26, 140.29, 141.25, 154.84. Anal. Calcd. for C₁₈H₁₂Cl₂N₂O: C, 62.99; H, 3.52; N, 8.16. Found: C, 62.98; H, 3.49; N, 8.15.

4,5-Dichloro-2-((*E*)-**4**-(*E*)-styrylstyryl)pyridazin-3(2*H*)-one (*3m*). Yellow crystal (methylene chloride). mp 224–225°C. IR (KBr) 3106, 1670, 1600, 1520, 1306, 1142, 968, 906, 820, 768, 698 cm⁻¹. ¹H NMR (CDCl₃); δ 7.12 (d, *J* = 4.01 Hz, 2H), 7.24 ~ 7.29 (m, 2H), 7.32 ~ 7.39 (m, 25H), 7.47 ~ 7.54 (m, 6H), 7.89 (s, 1H), 8.15 (d, *J* = 14.32 Hz, 1H). ¹³C NMR (CDCl₃); δ 121.87, 123.93, 126.58, 126.98, 127.39, 127.81, 128.02, 128.71, 129.28, 133.86, 134.38, 136.07, 137.18, 137.67. Anal. Calcd. for C₂₀H₁₄Cl₂N₂O: C, 65.06; H, 3.82; N, 7.59. Found: C, 65.05; H, 3.81; N, 7.57.

(*E*)-4,5-dichloro-2-(4-(dimethylamino)styryl)pyridazin-3(2H)one (3n). Deep red crystal (methylene chloride). mp 130– 132°C. IR (KBr) 3134, 2962, 1678, 1620, 1540, 1522, 1380, 1200, 1248, 1236, 964, 914 cm⁻¹. ¹H NMR (CDCl₃); δ 2.99 (s, 6H), 6.68 (d, J = 8.86 Hz, 2H), 7.22 (d, J = 14.26 Hz, 1H), 7.39 (d, J = 8.84 Hz, 2H), 7.85 (s, 1H), 7.98 (d, J = 14.24 Hz, 1H). ¹³C NMR (CDCl₃); δ 40.30, 112.25, 120.51, 122.36, 122.75, 128.27, 133.89, 135.33, 135.60, 150.59, 154.52. Anal. Calcd. for C₁₄H₁₃Cl₂N₃O: C, 54.21; H, 4.22; N, 13.55. Found: C, 54.19; H, 4.20; N, 13.52.

(*E*)-4,5-dichloro-2-(4-methoxystyryl)pyridazin-3(2*H*)-one (3o). Yellow crystal (methylene chloride). mp 177–178°C. IR (KBr) 3062, 2944, 1666, 1614, 1590, 1522, 1308, 1258, 1196, 1140, 1038, 960, 906, 812, 744 cm⁻¹. ¹H NMR (CDCl₃); δ 3.83 (s, OCH₃), 6.87 ~ 6.92 (m, 2H), 7.23 (d, J = 14.32 Hz, 1H), 7.41 ~ 7.4 5 (m, 2H), 7.86 (s, 1H), 8.01 (d, J = 14.29 Hz, 1H). ¹³C NMR (CDCl₃); δ 55.34, 114.32, 121.95, 122.36, 127.09, 128.37, 134.25, 135.74, 135.88, 154.62, 159.95. Anal. Calcd. for C₁₃H₁₀Cl₂N₂O₂: C, 52.55; H, 3.39; N, 9.43. Found: C, 52.52; H, 3.38; N, 9.40.

(*E*)-4,5-dichloro-2-(2-methoxystyryl)pyridazin-3(2*H*)-one (3*p*). Light yellow crystal (methylene chloride). mp 133–135°C. IR (KBr) 3132, 2987, 1684, 1600, 1500, 1478, 1300, 1260, 1140, 1042, 966, 760 cm⁻¹. ¹H NMR (CDCl₃); δ 3.91 (s, OCH₃), 6.91 ~ 6.99 (m, 2H), 7.26 ~ 7.31 (m, 1H), 7.48 ~ 7.51 (m, 1H), 7.53 (d, *J* = 14.02 Hz, 1H), 7.89 (s, 1H), 8.87 (d, *J* = 14.32 Hz, 1H). ¹³C NMR (CDCl₃); δ 55.50, 110.96, 118.06, 120.82, 123.42, 124.89, 128.31, 129.58, 134.33, 135.81, 135.90, 154.73, 157.45. Anal. Calcd. for C₁₃H₁₀Cl₂N₂O₂: C, 52.55; H, 3.39; N, 9.43. Found: C, 52.53; H, 3.37; N, 9.42.

(*E*)-4,5-dichloro-2-(3-methoxystyryl)pyridazin-3(2H)-one (3q). Pale yellow crystal (methylene chloride). mp 143–145°C. IR (KBr) 3126, 2988, 1676, 1602, 1504, 1478, 1264, 1134, 1046, 960, 900, 796, 740 cm⁻¹. ¹H NMR (CDCl₃); δ 3.84 (s, OCH₃), 6.84 ~ 6.88 (m, 1H), 7.01 ~ 7.02 (m, 1H), 7.08 ~ 7.11 (m, 1H), 7.24 ~ 7.31 (m, 2H), 7.89 (s, 1H), 8.12 (d, *J* = 14.32 Hz, 1H). ¹³C NMR (CDCl₃); δ 55.33, 112.12, 114.34, 119.73, 122.15, 124.30, 129.88, 134.52, 135.92, 136.00, 136.12, 154.72, 159.95. Anal. Calcd. for C₁₃H₁₀Cl₂N₂O₂: C, 52.55; H, 3.39; N, 9.43. Found: C, 52.51; H, 3.38; N, 9.43.

(*E*)-4,5-dichloro-2-(2,4-dimethoxystyryl)pyridazin-3(2*H*)-one (3*r*). Yellow crystal (methylene chloride). mp 169–170°C. IR (KBr) 3066, 2982, 1660, 1620, 1592, 1516, 1460, 1298, 1280, 1216, 1156, 1134, 1040, 966, 898, 834 cm⁻¹. ¹H NMR (CDCl₃); δ 3.83 (s, OCH₃), 3.88 (s, OCH₃), 6.47 ~ 6.52 (m, 2H), 7.39 ~ 7.46 (m, 3H), 7.86 (s, 1H), 8.17 (d, *J* = 14.36 Hz, 1H). ¹³C NMR (CDCl₃); δ 55.42, 55.51, 98.64, 105.08, 116.50, 118.10, 123.21, 129.30, 134.08, 135.52, 135.65, 154.62, 158.71, 161.23. Anal. Calcd. for C₁₄H₁₂Cl₂N₂O₃: C, 51.40; H, 3.70; N, 8.56. Found: C, 51.38; H, 3.70; N, 8.55.

δ 3.81 (s, 20CH₃), 6.40 ~ 6.42 (t, J = 2.19 Hz, 1H), 6.62 (d, J = 2.21 Hz, 2H), 7.20 (d, J = 14.30 Hz, 1H), 7.86 (s, 1H), 8.09 (d, J = 14.29 Hz, 1H). ¹³C NMR (CDCl₃); δ 55.43, 100.85, 104.99, 122.16, 124.40, 134.47, 135.98, 136.12, 136.41, 154.66, 161.03. Anal. Calcd. for C₁₄H₁₂Cl₂N₂O₃: C, 51.40; H, 3.70; N, 8.56. Found: C, 51.36; H, 3.69; N, 8.53.

(*E*)-4,5-dichloro-2-(2,3-dimethoxystyryl)pyridazin-3(2*H*)-one (*3t*). Yellow crystal (methylene chloride). mp 149–150°C. IR (KBr) 3066, 2962, 1674, 1592, 1482, 1276, 1076, 966 cm⁻¹. ¹H NMR (CDCl₃); δ 3.86 (s, OCH₃), 3.88 (s, OCH₃), 6.87 (dd, *J* = 1.28, 8.06 Hz, 1H), 7.05 (t, *J* = 7.96 Hz, 1H), 7.15 (dd, *J* = 1.27, 7.90 Hz, 1H), 7.54 (d, *J* = 14.46 Hz, 1H), 7.89 (s, 1H), 8.20 (d, *J* = 14.44 Hz, 1H). ¹³C NMR (CDCl₃); δ 55.85, 60.96, 112.34, 117.20, 118.82, 124.27, 125.26, 128.72, 134.38, 135.95, 136.03, 147.46, 153.12, 154.75. Anal. Calcd. for C₁₄H₁₂Cl₂N₂O₃: C, 51.40; H, 3.70; N, 8.56. Found: C, 51.39; H, 3.68; N, 8.55.

(*E*)-4,5-dichloro-2-(2,5-dimethoxystyryl)pyridazin-3(2*H*)-one (3*u*). Yellow crystal (methylene chloride). mp 158–159°C. IR (KBr) 3068, 2974, 1664, 1594, 1506, 1300, 1228, 1046, 972, 896, 814, 742 cm⁻¹. ¹H NMR (CDCl₃); δ 3.80 (s, OCH₃), 3.85 (s, OCH₃), 6.83 (s, 2H), 7.02 (d, J = 1.93 Hz, 1H), 7.47 (d, J = 14.40 Hz, 1H), 7.86 (s, 1H), 8.23 (d, J = 14.38 Hz, 1H). ¹³C NMR (CDCl₃); δ 55.80, 56.10, 112.20, 113.06, 114.83, 117.78, 124.10, 125.05, 134.29, 135.79, 135.90, 151.92, 153.63, 154.66. Anal. Calcd. for C₁₄H₁₂Cl₂N₂O₃: C, 51.40; H, 3.70; N, 8.56. Found: C, 51.38; H, 3.67; N, 8.53.

(*E*)-4,5-dichloro-2-(3,4-dimethoxystyryl)pyridazin-3(2*H*)-one (3*v*). Yellow crystal (methylene chloride). mp 163–164°C. IR (KBr) 3076, 2966, 1674, 1600, 1530, 1272, 1156, 1036, 958, 908, 814 cm⁻¹. ¹H NMR (CDCl₃); δ 3.90 (s, OCH₃), 3.93 (s, OCH₃), 6.84 (d, J = 7.97 Hz, 1H), 7.01 ~ 7.04 (m, 2H), 7.22 (d, J = 14.30 Hz, 1H), 7.85 (s, 1H), 8.01 (d, J = 14.28 Hz, 1H). ¹³C NMR (CDCl₃); δ 55.94, 55.97, 109.01, 111.27, 120.81, 122.20, 122.48, 127.41, 134.25, 135.74, 135.90, 149.26, 149.67, 154.59. Anal. Calcd. for C₁₄H₁₂Cl₂N₂O₃: C, 51.40; H, 3.70; N, 8.56. Found: C, 51.39; H, 3.68; N, 8.55.

(*E*)-4,5-dichloro-2-(2,6-dimethoxystyryl)pyridazin-3(2*H*)-one (3*w*). Light yellow crystal (methylene chloride). mp 190°C. IR (KBr) 3060, 2964, 1660, 1590, 1480, 1258, 1136, 1106, 962, 776, 720 cm⁻¹. ¹H NMR (CDCl₃); δ 3.90 (s, 2OCH₃), 6.56 (d, J = 8.39 Hz, 2H), 7.19 (t, J = 8.37 Hz, 1H), 7.66 (d, J =14.42 Hz, 1H), 7.86 (s, 1H), 8.63 (d, J = 14.42 Hz, 1H). ¹³C NMR (CDCl₃); δ 55.84, 103.75, 111.99, 113.20, 126.91, 12916, 134.06, 135.53, 135.62, 154.73, 158.81. Anal. Calcd. for C₁₄H₁₂Cl₂N₂O₃: C, 51.40; H, 3.70; N, 8.56. Found: C, 51.37; H, 3.66; N, 8.54.

(*E*)-4,5-dichloro-2-(3,4,5-trimethoxystyryl)pyridazin-3(2H)one (3x). Yellow crystal (methylene chloride). mp 149–150°C. IR (KBr) 3120, 2962, 1678, 1590, 1516, 1460, 1428, 1360, 1300, 1246, 1136, 1014, 952, 900 cm⁻¹. ¹H NMR (CDCl₃); δ 3.87 (s, OCH₃), 3.90 (s, 2OCH₃), 6.71 (s, 2H), 7.22 (d, *J* = 14.28 Hz, 1H), 7.88 (s, 1H), 8.04 (d, *J* = 14.26 Hz, 1H). ¹³C NMR (CDCl₃); δ 56.22, 60.97, 104.18, 122.32, 123.55, 130.12, 134.46, 135.95, 136.11, 138.69, 153.52, 154.68. Anal. Calcd. for $C_{15}H_{14}Cl_2N_2O_4$: C, 50.44; H, 3.95; N, 7.84. Found: C, 50.43; H, 3.93; N, 7.82.

(*E*)-4,5-dichloro-2-(2,4,6-trimethoxystyryl)pyridazin-3(2*H*)one (3y). Orange crystal (methylene chloride). mp 209–210°C. IR (KBr) 3058, 2950, 1650, 1600, 1580, 1458, 1334, 1232, 1196, 1120, 956 cm⁻¹. ¹H NMR (CDCl₃); δ 3.84 (s, OCH₃), 3.90 (s, 2OCH₃), 6.16 (s, 2H), 7.62 (d, *J* = 14.37 Hz, 1H), 7.88 (s, 1H), 8.51 (d, *J* = 14.37 Hz, 1H). ¹³C NMR (CDCl₃); δ 55.36, 55.80, 90.62, 105.36, 113.45, 124.96, 133.86, 135.30, 135.45, 154.70, 159.78, 161.20. Anal. Calcd. for C₁₅H₁₄Cl₂N₂O₄: C, 50.44; H, 3.95; N, 7.84. Found: C, 50.41; H, 3.93; N, 7.83.

δ 3.89 (s, 2 OCH₃), 3.92 (s, OCH₃), 6.53 (s, 1H), 6.99 (d, J = 2.66 Hz, 1H), 7.47 (d, J = 14.38 Hz, 1H), 7.87 (s, 1H), 8.14 (d, J = 14.37 Hz, 1H). ¹³C NMR (CDCl₃); δ 56.10, 56.45, 56.61, 97.40, 110.86, 115.04, 117.73, 123.03, 134.09, 135.59, 135.75, 143.38, 150.41, 152.41, 152.52, 154.64. Anal. Calcd. for C₁₅H₁₄Cl₂N₂O₄: C, 50.44; H, 3.95; N, 7.84. Found: C, 50.40; H, 3.93; N, 7.84.

(*E*)-4,5-dichloro-2-(2,3,4-trimethoxystyryl)pyridazin-3(2*H*)one (3aa). Yellow crystal (methylene chloride). mp 127– 128°C. IR (KBr) 3106, 2964, 1670, 1598, 1500, 1472, 1420, 1306, 1114, 1100, 970, 896 cm⁻¹. ¹H NMR (CDCl₃); δ 3.89 (s, 2 OCH₃), 3.93 (s, OCH₃), 6.69 (d, J = 8.77 Hz, 1H), 7.22 (d, J = 8.74 Hz, 1H), 7.426 (d, J = 14.43 Hz, 1H), 7.88 (s, 1H), 8.14 (d, J = 14.39 Hz, 1H). ¹³C NMR (CDCl₃); δ 56.06, 60.88, 61.12, 107.76, 117.54, 121.48, 122.12, 123.66, 134.19, 135.73, 135.85, 142.51, 152.25, 154.07, 154.66. Anal. Calcd. for C₁₅H₁₄Cl₂N₂O₄: C, 50.44; H, 3.95; N, 7.84. Found: C, 50.43; H, 3.94; N, 7.85.

Absorption spectra, fluorescence spectra and quantum yield. UV spectra were measured on a Shimadzu PC-2401 double beam spectrophotometer. Absorption spectra were collected from sample solution prepared under atmosphere without degassing or inert gas bubbling. The concentration of the sample solution is $1.0 \times 10^{-4} M$. ^b(M⁻¹ cm⁻¹).

Fluorescence spectra were recorded on a PerkinElmer LS50B spectrofluorometer at room temperature. Quantum yield of the emission is evaluated in acetonitrile at 25°C, the quantum yield values are that relative to 9,10-diphenylanthrancene $(1.00 \times 10^{-4} M)$ in acetonitrile (from 352 nm extraction, $\Phi = 0.95$).

Acknowledgment. This work was supported by a grant from the Korea Science and Engineering Foundation (KOSEF) to the Environmental Biotechnology National Core Research Center (grant no. R15-2003-012-02001-0).

REFERENCES AND NOTES

[1] de Silva, A. P.; McCaughan, B.; McKinney, B. O. F.; Querol, M. Dalton Trans 2003, 10, 1902.

[2] Balzani, V. Photochem Photobiol Sci 2003, 2, 459.

[3] Raymo, F. M.; Giordani, S. J Am Chem Soc 2002, 124, 2004.

[4] Brown, G. J.; de Silva, A. P.; Pagliari, S. Chem Commun (Camb) 2002, 21, 2461.

[5] Ballardini, R.; Balzani, V.; Credi, A.; Gandolf, A. M. T.; Venturi, M. Acc Chem Res 2001, 31, 445.

[6] Lavigne, J. J.; Anslyn, E. V. Angew Chem Int Ed 2001, 40, 3119.

[7] Beer, P. D.; Gale, P. A. Angew Chem Int Ed Engl 2001, 40, 486.

[8] Czarnik, A. W. Acc Chem Res 1994, 27, 302.

[9] Spichiger-Keller, U. S. Chemical Sensors and Biosensors for Medical and Biological Applications; Wiley VCH: Weinheim, Germany, 1998.

[10] He, H.; Mortellaro, M. A.; Leiner, M. J. P.; Fraatz, R. J.; Tusa, J. K. J Am Chem Soc 2003, 125, 1468.

[11] Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Acc Chem Res 2001, 34, 963.

[12] Hortala, M. A.; Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A. J Am Chem Soc 2003, 125, 20.

[13] Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A. Angew Chem Int Ed Engl 2002, 41, 3811.

[14] Wang, W.; Escobedo, J. O.; Lawrence, C. M.; Strongin, R. M. J Am Chem Soc 2004, 126, 3400.

[15] Valeur, B. Molecular Fluorescence Principle and Applications; Wiley-VCH: Weinheim, 2002; p 11.

[16] Tsien, R. Y. In Fluorescent and Photochemical Probes of Dynamic Biochemical Signals Inside Living Cells; Czarmik, A. W., Ed.; American Chemical Society: Washington DC, 1993; p 130.

[17] Rousseau, D. L. Optical Techniques in Biological Research; Academic Press: New York, 1984; Chapter 4.

[18] Thriernge, R.; Shio, H.; Han, Y. S.; Cohen, G.; Lazarow, P. B. Mol Cell Biol 1991, 11, 510.

[19] Lakowicz, J. R. Principle of Fluorescence and Spectroscopy; Plenum Press: New York, 1983.

[20] de Silva, A. P.; Gurarantane, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem Rev 1997, 97, 1515.

[21] Fu, Y.; Li, H.; Hu, W.; Zhu, D. Chem Commun (Camb) 2005, 25, 3189.

[22] Gunnlaugsson, T.; Leonard, J. P.; Murray, N. S. Org Lett 2004, 6, 1557.

[23] Gunnlaugsson, T.; Lee, T. C.; Parkesh, R. Org Lett 2003, 5, 4065.

[24] Granzhan, A.; Ihmels, H. Org Lett 2005, 7, 5119.

[25] Maeda, H.; Katayama, K.; Matsuno, H.; Uno, T. Angew Chem Int Ed Engl 2006, 45, 1810.

[26] Yang, J.-S.; Liau, K.-L.; Wang, C.-M.; Hwang, C.-Y. J Am Chem Soc 2004, 126, 12325.

[27] Yang, J.-S.; Hwang, C.-Y.; Hsieh, C.-C.; Chiou, S.-Y. J Org Chem 2004, 69, 719.

[28] Haroutounian, S. A.; Katzenellenbogen, J. A. Tetrahedron 1995, 51, 1585.

[29] Fery-Forgues, S.; Le Bris, M.-T.; Guette, J.-P.; Valeur, B. J Phys Chem 1988, 92, 6233.

[30] Sozzaani, P.; Comotti, A.; Bracco, S.; Simonutti, R. Angew Chem Int Ed Engl 2004, 43, 2792.

[31] Saito, H.; Mori, T.; Wada, T.; Inoue, Y. J Am Chem Soc 2004, 126, 1900.

[32] Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Bur-

roughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.

[33] Cao, Y.; Parker, I. D.; Yu, G.; Zhang, C.; Heeger, A. J. Nature 1999, 397, 414.

[34] Luo, Y.-H.; Liu, H.-W.; Xi, F.; Li, L.; Jin, X.-G.; Han, C. C.; Chan, C.-M. J Am Chem Soc 2003, 125, 6447.

[35] Schenning, A. P. H. J.; Meijer, E. W. Chem Commun (Camb) 2005, 26, 3245.

[36] Letard, J.-F.; Lapouyade, R.; Rettig, W. J Am Chem Soc 1993, 115, 2441.

[37] Bong, P.-H.; Kim, H. J.; Chae, K. H.; Shin, S. C.; Nakashima, Yoshihara, N. K. J Am Chem Soc 1986, 108, 1006.

[38] Yang, J.-S.; Chiou, S.-Y.; Liau, K.-L. J Am Chem Soc 2002, 124, 2518.

[39] Yang, J.-S.; Lin, Y.-D.; Chang, Y.-H.; Wang, S.-S. J Org Chem 2005, 70, 6066.

[40] Yang, J.-S.; Hwang, C.-Y.; Hsieh, C.-C.; Chiou, S. Y. J Org Chem 2004, 69, 719.

[41] Cho, S.-D.; Hwang, J.; Kim, H.-K.; Yim, H.-S.; Kim, J.-J.; Lee, S.-G.; Yoon, Y.-J. J Heterocyl Chem 2007, 44, 951.

[42] Yim, H.-S.; Kim, M.-R.; Lee, J.-K.; Lee, S.-G.; Yoon, Y.-J. J Heterocycl Chem 2007, 45, 215.

[43] Chung, H. A.; Kang, Y. J.; Yoon, Y. J. J Heterocycl Chem 1998, 35, 1257.

[44] Valeur, B. Molecular Fluorescence Principles and Applications; Wiley-VCH: New York, 2002; p 30.

[45] Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper & Row: New York, 1987; p 144.